A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways.
نویسندگان
چکیده
Canonical primary microRNA (miRNA) transcripts and mirtrons are proposed to transit distinct nuclear pathways en route to generating mature approximately 22 nucleotide regulatory RNAs. We generated a null allele of Drosophila pasha, which encodes a double-stranded RNA-binding protein partner of the RNase III enzyme Drosha. Analysis of this mutant yielded stringent evidence that Pasha is essential for the biogenesis of canonical miRNAs but is dispensable for the processing and function of mirtron-derived regulatory RNAs. The pasha mutant also provided a unique tool to study the developmental requirements for Drosophila miRNAs. While pasha adult somatic clones are similar in many respects to those of dicer-1 clones, pasha mutant larvae revealed an unexpected requirement for the miRNA pathway in imaginal disc growth. These data suggest limitations to somatic clonal analysis of miRNA pathway components.
منابع مشابه
The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila
The canonical microRNA (miRNA) pathway converts primary hairpin precursor transcripts into approximately 22 nucleotide regulatory RNAs via consecutive cleavages by two RNase III enzymes, Drosha and Dicer. In this study, we characterize Drosophila small RNAs that derive from short intronic hairpins termed "mirtrons." Their nuclear biogenesis appears to bypass Drosha cleavage, which is essential ...
متن کاملUridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila
Uridylation of RNA species represents an emerging theme in post-transcriptional gene regulation. In the microRNA pathway, such modifications regulate small RNA biogenesis and stability in plants, worms, and mammals. Here, we report Tailor, an uridylyltransferase that is required for the majority of 3' end modifications of microRNAs in Drosophila and predominantly targets precursor hairpins. Uri...
متن کاملAnalysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates
Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed ...
متن کاملA Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs.
Canonical animal microRNAs (miRNAs) are ∼22-nt regulatory RNAs generated by stepwise cleavage of primary hairpin transcripts by the Drosha and Dicer RNase III enzymes. We performed a genetic screen using an miRNA-repressed reporter in the Drosophila eye and recovered the first reported alleles of fly drosha, an allelic series of its dsRBD partner pasha, and novel alleles of dicer-1. Analysis of...
متن کاملComputational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans.
Mirtrons are intronic hairpin substrates of the dicing machinery that generate functional microRNAs. In this study, we describe experimental assays that defined the essential requirements for entry of introns into the mirtron pathway. These data informed a bioinformatic screen that effectively identified functional mirtrons from the Drosophila melanogaster transcriptome. These included 17 known...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2009